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Abstract
On the basis of the recently introduced averaging procedure in phase space,
a new type of entropy is defined on the von Neumann lattice. This quantity
can be interpreted as a measure of the uncertainty associated with simultaneous
measurement of the position and momentum observables in a discrete subset of
the phase space. Evaluating for a class of coherent states, it is shown that this
entropy takes a stationary value for the ground state, modulo a unit cell of the
lattice in such a class. This value for the ground state depends on the ratio of
the position lattice spacing and the momentum lattice spacing. It is found that
its minimum is realized for the perfect square lattice, i.e., absence of squeezing.
Numerical evaluation of this minimum gives 1.386. . . .

PACS numbers: 03.65.Ta, 02.20.-a, 05.30.-d, 05.50.+q, 05.70.-a

Ever since the introduction of the Wigner distribution function [1], the theory of phase-space
representations [2–4] has been playing vital roles in quantum statistical mechanics, quantum
chaos, and signal processing. The Husimi function, which is the coherent state representation
of a wavefunction (or a density matrix) and is often called the Q-function, is known to be
special in the sense that it is non-negative and exhibits a good analytical behaviour in contrast
to the Wigner function and the Sudarshan–Glauber P -function. Since the coherent state of the
harmonic oscillator is the most classical pure state with the minimum Heisenberg uncertainty
product, the Husimi Q-function is supposed to describe a semiclassical aspect of the system
under consideration. However, a measure of the classical nature of a normalized state, |ψ〉,
was lacking until Wehrl [5] introduced a classical entropy, which is defined by

W [ψ] = −
∫ ∫

d2α
|〈α|ψ〉|2
π

ln
|〈α|ψ〉|2
π

. (1)

|α〉 in this equation is the coherent state given by |α〉 = D̂(α)|0〉 (α ∈ C), where

D̂(α) = exp(αâ† − α∗â) (2)
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is the displacement operator, |0〉 the normalized ground state of the harmonic oscillator, and
â† and â respectively the creation and annihilation operators given in terms of the position and
momentum operators, x̂ and p̂, by

â† = 1

λ
√

2

(
x̂ − i

λ2

h̄
p̂

)
â = 1

λ
√

2

(
x̂ + i

λ2

h̄
p̂

)
(3)

where λ is a constant and often has the meaning of the width of the harmonic oscillator. A
pure state is considered here, but it is straightforward to generalize equation (1) to the case of
a mixed state by simply making the replacement |〈α|ψ〉|2 → 〈α|ρ̂|α〉, where ρ̂ is the density
matrix. Note that equation (1) differs from Wehrl’s original definition by having the factor
1/π inside the logarithm. We introduce this factor here since the normalization condition on
|ψ〉 is

∫ ∫
d2α |〈α|ψ〉|2/π = 1.

Wehrl [5] has evaluated this entropy for a class of coherent states {|z〉 = D̂(z)|0〉|z ∈ C}
and has found that W [z] = 1 + ln π . Then, he conjectured the inequality:

W [ψ] � 1 + ln π. (4)

This conjecture was immediately proved, in [6].
Here, we note that the fact that W [z] is independent of the coherent state parameter, z, is

due to the translational invariance of the Wehrl entropy, and therefore W [z] is essentially the
value for the ground state, |0〉.

The Wehrl entropy has repeatedly been used in the literature. For example, in [7]
this entropy and the corresponding marginal entropies are considered in order to study
the statistical properties of the squeezed states. In [8] it is employed as a sampling
entropy associated with operational measurements of quantum states, in which the ruler
states are chosen to be the coherent states. Another example is found in [9], where the
problem of discriminating quantum states in decoherence processes is considered using this
quantity.

The Wehrl entropy is defined in terms of the coherent state representation of a quantum
state. In [10] it has been discussed in detail why the coherent state representation
may be interpreted as a simultaneous measurement of the position and momentum
observables, or a pair of quadrature operators in quantum optics. Therefore, the Wehrl
entropy can also be regarded as a measure of the uncertainty associated with such
measurements.

As is well known, the coherent states possess the over-completeness property. However,
as noticed by von Neumann [11], a discrete subset of the coherent states, in which a single state
is assigned to a unit cell of area 2πh̄ in the phase plane, still forms a complete system [12–14].
(Strictly speaking, the von Neumann lattice states are still over-complete by one state.)
Nowadays this subset is called the von Neumann lattice.

Therefore, to maintain informational completeness of a given quantum state, it is sufficient
to consider it only on the von Neumann lattice. In fact, it is of physical relevance to process
the state on the lattice, since in practice one often uses a (finite) set of detectors arranged on the
lattice points to perform measurements [15]. Thus, considering the state on the von Neumann
lattice is equivalent to performing discrete simultaneous measurements of the position and
momentum observables.

Until very recently, this programme could not be carried out, however. This is because
it was not known how to construct the probability distribution function associated with the
state |ψ〉 on the von Neumann lattice. A major difficulty arises from nonorthogonality of
the coherent states and thus the von Neumann lattice states. Of course, one could imagine
the standard orthogonalization procedure being applied to the coherent states. However, then
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the Balian–Low theorem [16, 17] tells us that in such orthogonalized states the Heisenberg
uncertainty product �X�P is divergent, destroying the classical feature of the coherent
states. Recently, this difficulty has been overcome in [18]. In view of the fact that there are
an infinite number of the coherent states in a unit cell of the lattice, a procedure for averaging
the coherent states over the unit cell has been developed to construct an orthonormal system
on the lattice.

In this paper, we present a new type of entropy, which is defined on the von Neumann
lattice through averaging the HusimiQ-function over a unit cell. This entropy can be thought
of as a measure of the uncertainty associated with discrete simultaneous measurements of
the position and momentum observables on the lattice points. We evaluate it for a class of
coherent states and show that it takes a stationary value for the ground state, modulo a unit
cell of the von Neumann lattice in this class. Due to the lattice structure, the continuous
translation invariance is broken, in contrast to the case for the Wehrl entropy. An interesting
point is that this value for the ground states explicitly depends on the ratio of the von
Neumann lattice constant to λ in equation (3). We find that this stationary value realizes
its minimum for the perfect square lattice, i.e., absence of squeezing. Therefore, in this sense,
this entropy can also be regarded as a measure of classical nature of a quantum state, like the
Wehrl entropy.

Let us first summarize the averaging procedure developed in [18]. The von Neumann
lattice states are given by

|αmn〉 = D̂(αmn)|0〉 (5)

αmn = 1

λ
√

2

(
mb + i

2πλ2

b
n

)
(m, n ∈ Z). (6)

We construct infinitely many nonequivalent von Neumann lattice sets of the states by displacing
|αmn〉 using D̂(αmn)D̂(β)|0〉 with

β = 1

λ
√

2

(
X̄ + i

λ2

h̄
P̄

)
(7)

where X̄ and P̄ are real variables confined in the unit cell, δ, located at the origin of the von
Neumann lattice:

δ : −b
2

� X̄ � b

2
,−πh̄

b
� P̄ � πh̄

b
. (8)

This cell has the area 2πh̄. Then, the following relations of crucial importance can be
demonstrated [18]:

1

2πh̄

∫ ∫
δ

dX̄ dP̄ 〈0|D̂†(β)D̂†(αmn)D̂(αm′n′)D̂(β)|0〉 = δmm′δnn′ (9)

1

2πh̄

∑
m,n

∫ ∫
δ

dX̄ dP̄ D̂(αmn)D̂(β)|0〉〈0|D̂†(β)D̂†(αmn) = 1. (10)

The probability distribution function associated with a normalized state, |ψ〉, on the von
Neumann lattice is defined by

pψ(m, n) = 1

2πh̄

∫ ∫
δ

dX̄ dP̄ |〈0|D̂†(β)D̂†(αmn)|ψ〉|2. (11)

From equation (10), pψ(m, n) is found to be normalized:∑
m,n

pψ(m, n) = 1. (12)
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This property should be compared with that of the unaveraged quantity,Q(m, n) ≡ |〈αmn|ψ〉|2,
which does not sum to unity, as is well known. In the case of a mixed state described by the
density matrix, ρ̂, equation (11) is to be modified as follows:

pρ(m, n) = 1

2πh̄

∫ ∫
δ

dX̄ dP̄ 〈0|D̂†(β)D̂†(αmn)ρ̂D̂(αmn)D̂(β)|0〉. (13)

Now, taking advantage of the above construction, we present the following new entropy
defined on the von Neumann lattice:

S[ψ] = −
∑
m,n

pψ(m, n) lnpψ(m, n). (14)

This quantity can be thought of as a measure of the uncertainty associated with simultaneous
measurements of the position and momentum observables on the von Neumann lattice points.
We discuss, in what follows, some basic properties of this entropy.

First of all, we wish to point out that the continuous translation symmetry is manifestly
broken in S[ψ], in contrast to the Wehrl entropy. That is, S[ψ] is not invariant under the
transformation |ψ〉 → D̂(z)|ψ〉 (z ∈ C). However, it is still invariant under the discrete
translation on the lattice subspace, i.e., the translation that can be absorbed by a trivial shift of
the summation over all integers.

To our knowledge at present, it is not possible to analytically derive a rigorous value of
the lower bound of S[ψ]. Therefore, it seems legitimate to evaluate it for a class of coherent
states, |ψ〉 = |z〉 = D̂(z)|0〉 (z ∈ C). The corresponding probability distribution function on
the von Neumann lattice, pz(m, n), is calculated to be

pz(m, n) = 1

2πh̄

∫ ∫
δ

dX̄ dP̄ exp [−|β + (αmn − z)|2]

= 1

4
erf

(
ρm − b

2
√

2λ
, ρm +

b

2
√

2λ

)
erf

(
σn − πλ√

2b
, σn +

πλ√
2b

)
(15)

where

ρm = mb√
2λ

− Re z σn = nπ
√

2λ

b
− Im z (16)

and erf(x1, x2) is the error function defined by

erf(x1, x2) = 2√
π

∫ x2

x1

dx e−x2
. (17)

The associated entropy is given by

S[z] = −
∑
m,n

pz(m, n) lnpz(m, n). (18)

It should be noted that, from the integral representation in equation (15), it follows that

pz(−m,−n) = p−z(m, n) (19)

which implies

S[z] = S[−z]. (20)

We have already mentioned that S[z] explicitly depends on the coherent state parameter,
z, due to the broken continuous translation invariance. Here, we seek the stationarity condition
on S[z] with a given fixed value of

c ≡ b√
2πλ

. (21)
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Though the detailed calculations performed are not presented here, both ∂S[z]/∂ Re z and
∂S[z]/∂ Im z can be shown to vanish when z = 0. Thus, S[z = 0] is a candidate for being
the extremum of S[z]. Numerical evaluation tells us that S[z = 0] is actually the stationary
value of S[z]. This suggests that S[ψ] takes its minimum for the ground state of the harmonic
oscillator.

The quantity S[z = 0] still depends on the parameter c given in equation (21). Let us
examine for what value of c it becomes the global minimum. Using the integral representation
in equation (15) with z = 0, we find that the derivative of S[z = 0] with respect to c vanishes
when c = 1, that is,

b =
√

2πλ. (22)

Again, numerical evaluation shows that S[z = 0] in fact takes its minimum value when
equation (22) holds. It is calculated to be

Smin[z = 0] = 1.386 . . . . (23)

Thus, we present the following conjecture:

S[ψ] � 1.386 . . . . (24)

Note that this lower bound is smaller than that of the Wehrl entropy, 1 + ln π = 2.144 . . . .
Finally, we wish to mention that the minimum-entropy condition in equation (22) is

of interest since it makes the von Neumann lattice perfectly square, as can be seen from
equation (6). This means that the present entropy is made to increase by any squeezing
operation on the lattice. In this sense, it can also be regarded as a measure of the classical
nature of a quantum state, like the Wehrl entropy.

In conclusion, we have presented a new type of entropy defined on the von Neumann
lattice and have discussed its basic properties. We have given a physical interpretation to this
quantity, as a measure of the uncertainty associated with discrete simultaneous measurements
of the position and momentum observables on the von Neumann lattice. We have evaluated its
values for a class of coherent states, and have found that the entropy takes its minimum value
for the ground state of the harmonic oscillator when the lattice is perfectly square.
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